p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.374C23, C23.538C24, C22.2312- 1+4, C22.3142+ 1+4, C23⋊Q8⋊31C2, (C22×C4).406D4, C23.199(C2×D4), C23.69(C4○D4), C23.8Q8⋊88C2, C23.34D4⋊44C2, C23.11D4⋊62C2, C2.29(C23⋊3D4), (C2×C42).615C22, (C23×C4).434C22, (C22×C4).148C23, C22.363(C22×D4), C23.10D4.33C2, (C22×D4).545C22, (C22×Q8).157C22, C23.81C23⋊65C2, C23.78C23⋊30C2, C2.89(C22.19C24), C23.63C23⋊114C2, C2.C42.263C22, C2.51(C22.36C24), C2.42(C22.33C24), C2.44(C23.38C23), (C2×C4×D4).69C2, (C2×C4).397(C2×D4), (C2×C22⋊Q8)⋊29C2, (C2×C4).172(C4○D4), (C2×C4⋊C4).364C22, C22.410(C2×C4○D4), (C2×C22⋊C4).226C22, SmallGroup(128,1370)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.374C23
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=1, f2=b, g2=cb=bc, eae=ab=ba, faf-1=ac=ca, ad=da, ag=ga, bd=db, be=eb, gfg-1=bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, fef-1=de=ed, df=fd, dg=gd, eg=ge >
Subgroups: 516 in 260 conjugacy classes, 96 normal (34 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×Q8, C24, C2.C42, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4×D4, C22⋊Q8, C23×C4, C22×D4, C22×Q8, C23.34D4, C23.8Q8, C23.63C23, C23⋊Q8, C23.10D4, C23.78C23, C23.11D4, C23.11D4, C23.81C23, C2×C4×D4, C2×C22⋊Q8, C24.374C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.19C24, C23⋊3D4, C23.38C23, C22.33C24, C22.36C24, C24.374C23
(1 59)(2 46)(3 57)(4 48)(5 52)(6 37)(7 50)(8 39)(9 45)(10 60)(11 47)(12 58)(13 54)(14 41)(15 56)(16 43)(17 34)(18 31)(19 36)(20 29)(21 38)(22 51)(23 40)(24 49)(25 44)(26 55)(27 42)(28 53)(30 62)(32 64)(33 61)(35 63)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 9)(2 10)(3 11)(4 12)(5 23)(6 24)(7 21)(8 22)(13 25)(14 26)(15 27)(16 28)(17 62)(18 63)(19 64)(20 61)(29 33)(30 34)(31 35)(32 36)(37 49)(38 50)(39 51)(40 52)(41 55)(42 56)(43 53)(44 54)(45 59)(46 60)(47 57)(48 58)
(1 29)(2 30)(3 31)(4 32)(5 53)(6 54)(7 55)(8 56)(9 33)(10 34)(11 35)(12 36)(13 37)(14 38)(15 39)(16 40)(17 60)(18 57)(19 58)(20 59)(21 41)(22 42)(23 43)(24 44)(25 49)(26 50)(27 51)(28 52)(45 61)(46 62)(47 63)(48 64)
(2 30)(4 32)(5 55)(6 8)(7 53)(10 34)(12 36)(14 38)(16 40)(17 58)(18 20)(19 60)(21 43)(22 24)(23 41)(26 50)(28 52)(42 44)(45 47)(46 64)(48 62)(54 56)(57 59)(61 63)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 15 11 25)(2 14 12 28)(3 13 9 27)(4 16 10 26)(5 62 21 19)(6 61 22 18)(7 64 23 17)(8 63 24 20)(29 39 35 49)(30 38 36 52)(31 37 33 51)(32 40 34 50)(41 58 53 46)(42 57 54 45)(43 60 55 48)(44 59 56 47)
G:=sub<Sym(64)| (1,59)(2,46)(3,57)(4,48)(5,52)(6,37)(7,50)(8,39)(9,45)(10,60)(11,47)(12,58)(13,54)(14,41)(15,56)(16,43)(17,34)(18,31)(19,36)(20,29)(21,38)(22,51)(23,40)(24,49)(25,44)(26,55)(27,42)(28,53)(30,62)(32,64)(33,61)(35,63), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,9)(2,10)(3,11)(4,12)(5,23)(6,24)(7,21)(8,22)(13,25)(14,26)(15,27)(16,28)(17,62)(18,63)(19,64)(20,61)(29,33)(30,34)(31,35)(32,36)(37,49)(38,50)(39,51)(40,52)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,29)(2,30)(3,31)(4,32)(5,53)(6,54)(7,55)(8,56)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,60)(18,57)(19,58)(20,59)(21,41)(22,42)(23,43)(24,44)(25,49)(26,50)(27,51)(28,52)(45,61)(46,62)(47,63)(48,64), (2,30)(4,32)(5,55)(6,8)(7,53)(10,34)(12,36)(14,38)(16,40)(17,58)(18,20)(19,60)(21,43)(22,24)(23,41)(26,50)(28,52)(42,44)(45,47)(46,64)(48,62)(54,56)(57,59)(61,63), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,15,11,25)(2,14,12,28)(3,13,9,27)(4,16,10,26)(5,62,21,19)(6,61,22,18)(7,64,23,17)(8,63,24,20)(29,39,35,49)(30,38,36,52)(31,37,33,51)(32,40,34,50)(41,58,53,46)(42,57,54,45)(43,60,55,48)(44,59,56,47)>;
G:=Group( (1,59)(2,46)(3,57)(4,48)(5,52)(6,37)(7,50)(8,39)(9,45)(10,60)(11,47)(12,58)(13,54)(14,41)(15,56)(16,43)(17,34)(18,31)(19,36)(20,29)(21,38)(22,51)(23,40)(24,49)(25,44)(26,55)(27,42)(28,53)(30,62)(32,64)(33,61)(35,63), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,9)(2,10)(3,11)(4,12)(5,23)(6,24)(7,21)(8,22)(13,25)(14,26)(15,27)(16,28)(17,62)(18,63)(19,64)(20,61)(29,33)(30,34)(31,35)(32,36)(37,49)(38,50)(39,51)(40,52)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,29)(2,30)(3,31)(4,32)(5,53)(6,54)(7,55)(8,56)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,60)(18,57)(19,58)(20,59)(21,41)(22,42)(23,43)(24,44)(25,49)(26,50)(27,51)(28,52)(45,61)(46,62)(47,63)(48,64), (2,30)(4,32)(5,55)(6,8)(7,53)(10,34)(12,36)(14,38)(16,40)(17,58)(18,20)(19,60)(21,43)(22,24)(23,41)(26,50)(28,52)(42,44)(45,47)(46,64)(48,62)(54,56)(57,59)(61,63), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,15,11,25)(2,14,12,28)(3,13,9,27)(4,16,10,26)(5,62,21,19)(6,61,22,18)(7,64,23,17)(8,63,24,20)(29,39,35,49)(30,38,36,52)(31,37,33,51)(32,40,34,50)(41,58,53,46)(42,57,54,45)(43,60,55,48)(44,59,56,47) );
G=PermutationGroup([[(1,59),(2,46),(3,57),(4,48),(5,52),(6,37),(7,50),(8,39),(9,45),(10,60),(11,47),(12,58),(13,54),(14,41),(15,56),(16,43),(17,34),(18,31),(19,36),(20,29),(21,38),(22,51),(23,40),(24,49),(25,44),(26,55),(27,42),(28,53),(30,62),(32,64),(33,61),(35,63)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,9),(2,10),(3,11),(4,12),(5,23),(6,24),(7,21),(8,22),(13,25),(14,26),(15,27),(16,28),(17,62),(18,63),(19,64),(20,61),(29,33),(30,34),(31,35),(32,36),(37,49),(38,50),(39,51),(40,52),(41,55),(42,56),(43,53),(44,54),(45,59),(46,60),(47,57),(48,58)], [(1,29),(2,30),(3,31),(4,32),(5,53),(6,54),(7,55),(8,56),(9,33),(10,34),(11,35),(12,36),(13,37),(14,38),(15,39),(16,40),(17,60),(18,57),(19,58),(20,59),(21,41),(22,42),(23,43),(24,44),(25,49),(26,50),(27,51),(28,52),(45,61),(46,62),(47,63),(48,64)], [(2,30),(4,32),(5,55),(6,8),(7,53),(10,34),(12,36),(14,38),(16,40),(17,58),(18,20),(19,60),(21,43),(22,24),(23,41),(26,50),(28,52),(42,44),(45,47),(46,64),(48,62),(54,56),(57,59),(61,63)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,15,11,25),(2,14,12,28),(3,13,9,27),(4,16,10,26),(5,62,21,19),(6,61,22,18),(7,64,23,17),(8,63,24,20),(29,39,35,49),(30,38,36,52),(31,37,33,51),(32,40,34,50),(41,58,53,46),(42,57,54,45),(43,60,55,48),(44,59,56,47)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 4M | ··· | 4T |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C24.374C23 | C23.34D4 | C23.8Q8 | C23.63C23 | C23⋊Q8 | C23.10D4 | C23.78C23 | C23.11D4 | C23.81C23 | C2×C4×D4 | C2×C22⋊Q8 | C22×C4 | C2×C4 | C23 | C22 | C22 |
# reps | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 3 | 1 | 1 | 1 | 4 | 4 | 4 | 2 | 2 |
Matrix representation of C24.374C23 ►in GL8(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 |
G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,4,0,0,0,0,1,0,0,0,0,0,0,0,1,4,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,4,0,0,0,0,0,0,3,2,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,2,3] >;
C24.374C23 in GAP, Magma, Sage, TeX
C_2^4._{374}C_2^3
% in TeX
G:=Group("C2^4.374C2^3");
// GroupNames label
G:=SmallGroup(128,1370);
// by ID
G=gap.SmallGroup(128,1370);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,758,723,100,185,192]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=1,f^2=b,g^2=c*b=b*c,e*a*e=a*b=b*a,f*a*f^-1=a*c=c*a,a*d=d*a,a*g=g*a,b*d=d*b,b*e=e*b,g*f*g^-1=b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,f*e*f^-1=d*e=e*d,d*f=f*d,d*g=g*d,e*g=g*e>;
// generators/relations